Friday, August 21, 2009

Smoke alarm

A smoke detector is a device that detects smoke. Commercial, industrial, and mass residential devices issue a signal to a fire alarm system, while household detectors, known as smoke alarms, generally issue a local audible and/or visual alarm from the detector itself.
Smoke detectors are typically housed in a disk-shaped plastic enclosure about 150 millimetres (6 in) in diameter and 25 millimetres (1 in) thick, but the shape can vary by manufacturer or product line. Most smoke detectors work either by optical detection (photoelectric) or by physical process (ionization), while others use both detection methods to increase sensitivity to smoke. Smoke detectors in large commercial, industrial, and residential buildings are usually powered by a central fire alarm system, which is powered by the building power with a battery backup. However, in many single family detached and smaller multiple family housings, a smoke alarm is often powered only by a single disposable battery.
History:-
The first automatic electric fire alarm was invented in 1890 by Francis Robbins Upton (US patent no. 436,961). Upton was an associate of Thomas Edison, although there is no evidence that Edison contributed to this project.
In the late 1930s the Swiss physicist Walter Jaeger tried to invent a sensor for poison gas. He expected that gas entering the sensor would bind to ionized air molecules and thereby alter an electric current in a circuit in the instrument. His device failed: small concentrations of gas had no effect on the sensor's conductivity. Frustrated, Jaeger lit a cigarette—and was soon surprised to notice that a meter on the instrument had registered a drop in current. Smoke particles had apparently done what poison gas could not. Jaeger's experiment was one of the advances that paved the way for the modern smoke detector.
It was 30 years, however, before progress in nuclear chemistry and solid-state electronics made a cheap sensor possible. While home smoke detectors were available during most of the 1960s, the price of these devices was rather high. Before that, alarms were so expensive that only major businesses and theaters could afford them.
The first truly affordable home smoke detectors were invented by Duane D. Pearsall and Stanley Bennett Peterson in 1965, featuring individual battery powered units that could be easily installed and replaced. The first units for mass production came from the manufacturing mind of Stanley B. Peterson in 1975 at Duane Pearsall’s company in Lakewood, Colorado, named Statitrol Corporation.
These first units were made from strong fire resistant steel and shaped much like a bee's hive. The battery was a rechargeable specialized unit created by Gates Energy. The need of a quick replace battery didn't take long to show its need and the rechargeable was replaced with a pair of double A's along with a plastic shell encasing the detector. Daniel Peterson, son to Stanley, was the manufacturing floor supervisor and shipping lead for quality control setting a new record for small business PCB electro/mechanical manufacturing during the time (1975–1977). The small assembly line sent close to 500 units per day before Statitrol sold its invention to Emerson Electric in 1980 and Sears’s retailers picked up full distribution of the 'now required in every home' smoke detector.
The first commercial smoke detectors came to market in 1969. Today they are installed in 93% of US homes and 85% of UK homes. However it is estimated that any given time over 30% of these alarms don't work, as users remove the batteries, or forget to replace them.
Although commonly attributed to NASA, smoke detectors were not invented as a result of the space program, though a variant with adjustable sensitivity was developed for Skylab
Desine:-
An optical detector is a light sensor. When used as a smoke detector, it includes a light source (incandescent bulb or infrared LED), a lens to collimate the light into a beam, and a photodiode or other photoelectric sensor at an angle to the beam as a light detector. In the absence of smoke, the light passes in front of the detector in a straight line. When smoke enters the optical chamber across the path of the light beam, some light is scattered by the smoke particles, directing it at the sensor and thus triggering the alarm.
Also seen in large rooms, such as a gymnasium or an auditorium, are devices to detect a projected beam. A unit on the wall sends out a beam, which is either received by a receiver or reflected back via a mirror. When the beam is less visible to the "eye" of the sensor, it sends an alarm signal to the fire alarm control panel.
Optical smoke detectors are quick in detecting particulate (smoke) generated by smoldering (cool, smoky) fires. Many independent tests indicate that optical smoke detectors typically detect particulates (smoke) from hot, flaming fires approximately 30 seconds later than ionization smoke alarms.
They are less sensitive to false alarms from steam or cooking fumes generated in kitchen or steam from the bathroom than are ionization smoke alarms. For the aforementioned reason, they are often referred to as 'toast proof' smoke alarms.
Lonization:-
This type of detector is cheaper than the optical detector; however, it is sometimes rejected because it is more prone to false alarms than photoelectric smoke detectors[citation needed]. It can detect particles of smoke that are too small to be visible. It includes 150 milligrams of radioactive americium 241 (241Am). The radiation passes through an ionization chamber, an air-filled space between two electrodes, and permits a small, constant current between the electrodes. Any smoke that enters the chamber absorbs the alpha particles, which reduces the ionization and interrupts this current, setting off the alarm.
241Am, an alpha emitter, has a half-life of 432.2 years. This means that it does not have to be replaced during the useful life of the detector, and also makes it safe for people at home, since it is only slightly radioactive. Alpha radiation, as opposed to beta and gamma, is used for two additional reasons: Alpha particles have high ionization, so sufficient air particles will be ionized for the current to exist, and they have low penetrative power, meaning they will be stopped by the plastic of the smoke detector and/or the air.
Air-sampling:-
An air-sampling smoke detector is capable of detecting microscopic particles of smoke. Most air-sampling detectors are aspirating smoke detectors, which work by actively drawing air through a network of small-bore pipes laid out above or below a ceiling in parallel runs covering a protected area. Small holes drilled into each pipe form a matrix of holes (sampling points), providing an even distribution across the pipe network. Air samples are drawn past a sensitive optical device, often a solid-state laser, tuned to detect the extremely small particles of combustion. Air-sampling detectors may be used to trigger an automatic fire response, such as a gaseous fire suppression system, in high-value or mission-critical areas, such as archives or computer server rooms.
Most air-sampling smoke detection systems are capable of a higher sensitivity than spot type smoke detectors and provide multiple levels of alarm threshold, such as Alert, Action, Fire 1 and Fire 2. Thresholds may be set at levels across a wide range of smoke levels. This provides earlier notification of a developing fire than spot type smoke detection, allowing manual intervention or activation of automatic suppression systems before a fire has developed beyond the smoldering stage, thereby increasing the time available for evacuation and minimizing fire damage.
Carbon monoxide and carbon dioxide detection:-
Some smoke alarms use a carbon dioxide sensor or carbon monoxide sensor in order to detect extremely dangerous products of combustion. However, not all smoke detectors that are advertised with such gas sensors are actually able to warn of poisonous levels of those gases in the absence of a fire.
Performance differences:-
Optical or "toast-proof" smoke detectors are generally quicker in detecting particulate (smoke) generated by smoldering (cool, smokey) fires. Ionization smoke detectors are generally quicker in detecting particulate (smoke) generated by flaming (hot) fires.
According to fire tests conformant to EN 54, normally the CO2 cloud from smoke can be detected before particulate.
Obscuration is a unit of measurement that has become the standard definition of smoke detector sensitivity. Obscuration is the effect that smoke has on reducing visibility. Higher concentrations of smoke result in higher obscuration levels, lowering visibility.

No comments:

Post a Comment