Sunday, August 23, 2009

Insulator

An insulator, also called a dielectric, is a material that resists the flow of electric current. An insulating material has atoms with tightly bonded valence electrons. These materials are used in parts of electrical equipment, also called insulators or insulation, intended to support or separate electrical conductors without passing current through themselves. The term is also used more specifically to refer to insulating supports that attach electric power transmission wires to utility poles or pylons.
Some materials such as glass or Teflon are very good electrical insulators. A much larger class of materials, for example rubber-like polymers and most plastics are still "good enough" to insulate electrical wiring and cables even though they may have lower bulk resistivity. These materials can serve as practical and safe insulators for low to moderate voltages (hundreds, or even thousands, of volts).
physics of conduction in solids:-
Electrical insulation is the absence of electrical conduction. Electronic band theory (a branch of physics) predicts that a charge will flow whenever there are states available into which the electrons in a material can be excited. This allows them to gain energy and thereby move through the conductor (usually a metal). If no such states are available, the material is an insulator.
Most (though not all, see Mott insulator) insulators are characterized by having a large band gap. This occurs because the "valence" band containing the highest energy electrons is full, and a large energy gap separates this band from the next band above it. There is always some voltage (called the breakdown voltage) that will give the electrons enough energy to be excited into this band. Once this voltage is exceeded, the material ceases being an insulator, and charge will begin to pass through it. However, it is usually accompanied by physical or chemical changes that permanently degrade the material's insulating properties.
Materials that lack electron conduction are insulators if they lack other mobile charges as well. For example, if a liquid or gas contains ions, then the ions can be made to flow as an electric current, and the material is a conductor. Electrolytes and plasmas contain ions and will act as conductors whether or not electron flow is involved.
Breakdown:-
Insulators suffer from the phenomenon of electrical breakdown. When any voltage applied across a length of insulating substance exceeds a threshold breakdown field for that substance, which equals the band gap energy, the insulator suddenly turns into a resistor, sometimes with catastrophic results. During electrical breakdown, any free charge carrier being accelerated by the strong e-field will have enough velocity to knock electrons from (ionize) any atom it strikes. These freed electrons and ions are in turn accelerated and strike other atoms, creating more charge carriers, in a chain reaction. Rapidly the insulator becomes filled with mobile carriers, and its resistance drops to a low level. In air, the outbreak of conductivity is called "corona discharge" or a "spark." Similar breakdown can occur within any insulator, even within the bulk solid of a material. Even a vacuum can suffer a sort of break down, but in this case the breakdown or vacuum arc involves charges ejected from the surface of metal electrodes rather than produced by the vacuum itself.
Uses:-
Insulators are commonly used as a flexible coating on electric wire and cable. Since air is an insulator, no other substance is needed to "keep the electricity within the wires." However, wires which touch each other will produce cross connections, short circuits, and fire hazards. In coaxial cable the center conductor must be supported exactly in the middle of the hollow shield in order to prevent EM wave reflections. And any wires which present voltages higher than 60V can cause human shock and electrocution hazards. Insulating coatings prevent all of these problems.
In electronic systems, printed circuit boards are made from epoxy plastic and fiberglass. The nonconductive boards support layers of copper foil conductors. In electronic devices, the tiny and delicate active components are embedded within nonconductive epoxy or phenolic plastics, or within baked glass or ceramic coatings.
In microelectronic components such as transistors and ICs, the silicon material is normally a conductor because of doping, but it can easily be selectively transformed into a good insulator by the application of heat and oxygen. Oxidized silicon is quartz, i.e. silicon dioxide.
In high voltage systems containing transformers and capacitors, liquid insulator oil is the typical method used for preventing sparks. The oil replaces the air in any spaces which must support significant voltage without electrical breakdown. Other methods of insulating high voltage systems are ceramic or glass wire holders and simply placing the wires with a large separation, using the air as insulation.
Material:-Insulators used for high-voltage power transmission are made from glass, porcelain, or composite polymer materials. Porcelain insulators are made from clay, quartz or alumina and feldspar, and are covered with a smooth glaze to shed water. Insulators made from porcelain rich in alumina are used where high mechanical strength is a criterion. Porcelain has a dielectric strength of about 4–10 kV/mm.Glass has a higher dielectric strength, but it attracts condensation and the thick irregular shapes needed for insulators are difficult to cast without internal strains.Some insulator manufacturers stopped making glass insulators in the late 1960s, switching to ceramic materials.
Recently, some electric utilities have begun converting to polymer composite materials for some types of insulators. These are typically composed of a central rod made of fibre reinforced plastic and an outer weathershed made of silicone rubber or EPDM. Composite insulators are less costly, lighter in weight, and have excellent hydrophobic capability. This combination makes them ideal for service in polluted areas. However, these materials do not yet have the long-term proven service life of glass and porcelain.
Design:-
The electrical breakdown of an insulator due to excessive voltage can occur in one of two ways:
Puncture voltage is the voltage across the insulator (when installed in its normal manner) which causes a breakdown and conduction through the interior of the insulator. The heat resulting from the puncture arc usually damages the insulator irreparably. Flashover voltage is the voltage which causes the air around or along the surface of the insulator to break down and conduct, causing a 'flashover' arc along the outside of the insulator. They are usually designed to withstand this without damage. Most high voltage insulators are designed with a lower flashover voltage than puncture voltage, so they will flashover before they puncture, to avoid damage.
Dirt, pollution, salt, and particularly water on the surface of a high voltage insulator can create a conductive path across it, causing leakage currents and flashovers. The flashover voltage can be more than 50% lower when the insulator is wet. High voltage insulators for outdoor use are shaped to maximize the length of the leakage path along the surface from one end to the other, called the creepage length, to minimize these leakage currents.[3] To accomplish this the surface is molded into a series of corrugations or concentric disk shapes. These usually include one or more sheds; downward facing cup-shaped surfaces that act as umbrellas to ensure that the part of the surface leakage path under the 'cup' stays dry in wet weather. Minimum creepage distances are 20–25 mm/kV, but must be increased in high pollution or airborne sea-salt areas.

No comments:

Post a Comment