Friday, January 8, 2010

Heat transfer

Heat transfer is the transition of thermal energy from a hotter object to a cooler object ("object" in this sense designating a complex collection of particles which is capable of storing energy in many different ways). When an object or fluid is at a different temperature than its surroundings or another object, transfer of thermal energy, also known as heat transfer, or heat exchange, occurs in such a way that the body and the surroundings reach thermal equilibrium; this means that they are at the same temperature. Heat transfer always occurs from a higher-temperature object to a cooler-temperature one as described by the second law of thermodynamics or the Clausius statement. Where there is a temperature difference between objects in proximity, heat transfer between them can never be stopped; it can only be slowed.
Conduction is the transfer of heat by direct contact of particles of matter. The transfer of energy could be primarily by elastic impact as in fluids or by free electron diffusion as predominant in metals or phonon vibration as predominant in insulators. In other words, heat is transferred by conduction when adjacent atoms vibrate against one another, or as electrons move from atom to atom. Conduction is greater in solids, where atoms are in constant contact. In liquids (except liquid metals) and gases, the molecules are usually further apart, giving a lower chance of molecules colliding and passing on thermal energy.
Heat conduction is directly analogous to diffusion of particles into a fluid, in the situation where there are no fluid currents. This type of heat diffusion differs from mass diffusion in behaviour, only in as much as it can occur in solids, whereas mass diffusion is mostly limited to fluids.
Metals (e.g. copper, platinum, gold, iron, etc.) are usually the best conductors of thermal energy. This is due to the way that metals are chemically bonded: metallic bonds (as opposed to covalent or ionic bonds) have free-moving electrons which are able to transfer thermal energy rapidly through the metal.
As density decreases so does conduction. Therefore, fluids (and especially gases) are less conductive. This is due to the large distance between atoms in a gas: fewer collisions between atoms means less conduction. Conductivity of gases increases with temperature. Conductivity increases with increasing pressure from vacuum up to a critical point that the density of the gas is such that molecules of the gas may be expected to collide with each other before they transfer heat from one surface to another. After this point in density, conductivity increases only slightly with increasing pressure and density.

No comments:

Post a Comment