Saturday, October 10, 2009

Induction motor

An induction motor is a type of alternating current motor where power is supplied to the rotating device by means of electromagnetic induction. It is also called asynchronous motor.An electric motor converts electrical power to mechanical power in its rotor (rotating part). There are several ways to supply power to the rotor. In a DC motor this power is supplied to the armature directly from a DC source, while in an induction motor this power is induced in the rotating device. An induction motor is sometimes called a rotating transformer because the stator (stationary part) is essentially the primary side of the transformer and the rotor (rotating part) is the secondary side. The primary side's currents evokes a magnetic field which interacts with the secondary sides mmf to produce a resultant torque, henceforth serving the purpose of producing mechanical energy. Induction motors are widely used, especially polyphase induction motors, which are frequently used in industrial drives.
History:-
The induction motor with a wrapped rotor was invented by Nikola Tesla in 1882 in France but the initial patent was issued in 1888 after Tesla had moved to the United States. In his scientific work, Tesla laid the foundations for understanding the way the motor operates. The induction motor with a cage was invented by Mikhail Dolivo-Dobrovolsky about a year later in Europe. Technological development in the field has improved to where a 100 hp (74.6 kW) motor from 1976 takes the same volume as a 7.5 hp (5.5 kW) motor did in 1897. Currently, the most common induction motor is the cage rotor motor. Principle of operation and comparison to synchronous motors:-The basic difference between an induction motor and a synchronous AC motor is that in the latter a current is supplied onto the rotor. This then creates a magnetic field which, through magnetic interaction, links to the rotating magnetic field in the stator which in turn causes the rotor to turn. It is called synchronous because at steady state the speed of the rotor is the same as the speed of the rotating magnetic field in the stator.
By way of contrast, the induction motor does not have any direct supply onto the rotor; instead, a secondary current is induced in the rotor. To achieve this, stator windings are arranged around the rotor so that when energised with a polyphase supply they create a rotating magnetic field pattern which sweeps past the rotor. This changing magnetic field pattern induces current in the rotor conductors. These currents interact with the rotating magnetic field created by the stator and in effect causes a rotational motion on the rotor.
However, for these currents to be induced, the speed of the physical rotor must be less than the speed of the rotating magnetic field in the stator, or else the magnetic field will not be moving relative to the rotor conductors and no currents will be induced. If by some chance this happens, the rotor typically slows slightly until a current is re-induced and then the rotor continues as before. This difference between the speed of the rotor and speed of the rotating magnetic field in the stator is called slip. It is unitless and is the ratio between the relative speed of the magnetic field as seen by the rotor (the slip speed) to the speed of the rotating stator field. Due to this an induction motor is sometimes referred to as an asynchronous machine.
Construction:-
The stator consists of wound 'poles' that carry the supply current to induce a magnetic field that penetrates the rotor. In a very simple motor, there would be a single projecting piece of the stator (a salient pole) for each pole, with windings around it; in fact, to optimize the distribution of the magnetic field, the windings are distributed in many slots located around the stator, but the magnetic field still has the same number of north-south alternations.Induction motors are most commonly built to run on single-phase or three-phase power, but two-phase motors also exist. In theory, two-phase and more than three phase induction motors are possible; many single-phase motors having two windings and requiring a capacitor can actually be viewed as two-phase motors, since the capacitor generates a second power phase 90 degrees from the single-phase supply and feeds it to a separate motor winding. Single-phase power is more widely available in residential buildings, but cannot produce a rotating field in the motor (the field merely oscillates back and forth), so single-phase induction motors must incorporate some kind of starting mechanism to produce a rotating field. They would, using the simplified analogy of salient poles, have one salient pole per pole number; a four-pole motor would have four salient poles. Three-phase motors have three salient poles per pole number, so a four-pole motor would have twelve salient poles. This allows the motor to produce a rotating field, allowing the motor to start with no extra equipment and run more efficiently than a similar single-phase motor.

No comments:

Post a Comment